Segmentation algorithm for non-stationary compound Poisson processes
نویسندگان
چکیده
We introduce an algorithm for the segmentation of a class of regime switching processes. The segmentation algorithm is a non parametric statistical method able to identify the regimes (patches) of a time series. The process is composed of consecutive patches of variable length. In each patch the process is described by a stationary compound Poisson process, i.e. a Poisson process where each count is associated with a fluctuating signal. The parameters of the process are different in each patch and therefore the time series is non-stationary. Our method is a generalization of the algorithm introduced by Bernaola-Galván, et al. [Phys. Rev. Lett. 87, 168105 (2001)]. We show that the new algorithm outperforms the original one for regime switching models of compound Poisson processes. As an application we use the algorithm to segment the time series of the inventory of market members of the London Stock Exchange and we observe that our method finds almost three times more patches than the original one.
منابع مشابه
Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملLecture 05: Compound and Non-Stationary Poisson Processes
A compound Poisson process is a real-valued point process {Zt , t ≥ 0} having the following properties. 1. finite jumps: for all ω ∈Ω, t 7−→ Zt(ω) has finitely many jumps in finite intervals. 2. independent increments: for all t,s≥ 0;Zt+s−Zt is independent of past {Zu,u≤ t}. 3. stationary increments: for all t,s≥ 0, distribution of Zt+s−Zt depends only on s and not on t. For each ω ∈Ω, we can d...
متن کاملProbability in the Engineering and Informational Sciences
Motivated by non-Poisson stochastic variability found in service system arrival data, we extend established service system staffing algorithms using the square-root staffing formula to allow for non-Poisson arrival processes. We develop a general model of the non-Poisson non-stationary arrival process that includes as a special case the non-stationary Cox process (a modification of a Poisson pr...
متن کاملAn Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
متن کاملAn Adaptive Segmentation Method Using Fractal Dimension and Wavelet Transform
In analyzing a signal, especially a non-stationary signal, it is often necessary the desired signal to be segmented into small epochs. Segmentation can be performed by splitting the signal at time instances where signal amplitude or frequency change. In this paper, the signal is initially decomposed into signals with different frequency bands using wavelet transform. Then, fractal dimension of ...
متن کامل